Archive for February 2024

The Quill 3 ~ On Generic Point

For a domain (or integral domain), the affine scheme is called an integral affine scheme. We know that the spectrum of the ring Spec $R$ is a collection of all the prime ideals of the ring, which is equivalent to geometric points of the affine space. For instance, for the polynomial ring $\mathbb{Z}[x]$, the affine space is 

$$A^1_{\mathbb{Z}} = Spec(\mathbb{Z}[x]).$$

For an algebraic closed field $K[x_1, x_2, \cdots, x_n]$, the prime ideals are of form $(x_1-a_1, x_2-a_2, \cdots, x_n - a_n )$ where $a_n \in \mathbb{C}$. This is known as weak Nullstellanz. (In a previous case, we saw that for $\mathbb{C}[x]$, the prime ideals were the maximal ideals $(x-a)$ where $a \in \mathbb{C}$ and the zero prime ideal $(0)$.)

We called the prime ideal (0) a `generic point' in that picture. But what does the term mean? Generally, a generic point $x \in X$ where $X$ is a topological space if the closure of $x$ is the whole space. (One can find different definitions of generic points in the presence of different motivations.) Equivalently, we say that the generic point is a point that is `generic' for the whole space. Thus, if some function is valued on the generic point, then the function will value the same everywhere in the space. In general, a generic point is not available in the affine space. So, a generic point is contained in any other point of space. In the example of $\mathbb{C}[x]$, the generic point is unique, which is zero ideal. We know that the affine space points correspond to the ring's prime ideals. But a zero ideal can not be `pointed' in the affine space, meaning that the points of affine space will generally correspond to the maximal ideals of the ring.

The prime ideals of $\mathbb{Z}[x]$ are the principle ideals generated by primes $p$, ideals generated by irreducible polynomials $f(x)$, of form $(p,(f(x))$ which are the maximal ideals and zero ideals. Now, we know that the affine space of $\mathbb{Z}[x]$ is just a space with points corresponding to these prime ideals, which are called the spectrum of $\mathbb{Z}[X]$. Interestingly, Mumford has a picture containing these points in his Red Book of Varieties and Scheme, known as Mumford's Treasure Map.

We see that the map has some points on the intersection of the horizontal and vertical curves, and the curves themselves are a collection of prime ideals. The horizontal curves are the prime ideals generated by some irreducible polynomial of form $f(x)$. In the map, one has polynomial $(x)$, so the ideal is $Z[x]/(x) \simeq \mathbb{Z}$ and similarly we have $(x^2+1)$ and so on. (We can see that the curve of $(x)$ is less thickened than $(x^2+1)$, which is because of the number of elements contained in the ideal.)

The vertical curve has points of the principle ideals the primes generate, for example, $\mathbb{Z}[x]/p$. $\mathbb{Z}[x]/2$ which is just $\mathbb{F}_2[x]$ (since $\mathbb{Z}[x]/p \simeq \mathbb{Z}/(p\mathbb{Z}) [x]$) where $\mathbb{F}_p$ is a finite field. Now, we have the points on the intersection of the curves, which are $(p,(f(x))$, and these are the maximal ideals. So, for $(2,(x+1))$, we have $\mathbb{Z}[x]/(3,(x+2)) = \mathbb{Z}/(3\mathbb{Z})[x]/(x+2) = \mathbb{F}_3$. 

But where are the generic points? Mumford has some doodles in the upper right corner of the map. This is the zero ideal of $\mathbb{Z}[x]$ and is called a generic point. Geometrically, it does not make sense to point out a generic point since it is available everywhere, but it is nicely drawn on the map. The doodle has been pointed in every direction and is contained in every other point of the space. Once again, a generic point is quite harder to make sense of geometrically, but this is a nice way of visualizing them for the case of $\mathbb{Z}[x]$.

Posted in | Leave a comment Print it.

The Quill 2 ~ Defining Gauge Theory

This post will contain some random notes on gauge theory and differential geometry.


It was very surprising when two cohorts, namely mathematicians and physicists, found that the stuff they were doing simultaneously was the same in two different languages. Let us take a vector bundle E with $G$ as its structure group on a manifold $\mathcal{M}$. Then, here, one can do lots of differential geometry. But the interesting thing is that this is equivalent to describing a gauge theory with the gauge group $G$. Let's say the connection on the vector bundle $A$ is 1-forms potential in the gauge theory. The curvature is defined as the exterior derivative of $A$
$$F=dA$$
In the case of electromagnetism, which is U(1) gauge theory, one can say that a vector bundle with $U(1)$ structure group and connection $A$ defines the electromagnetism where $A$ follows a gauge transformation
$$G \colon A \rightarrow A'$$
where $G=U(1)$ in this case. The gauge transformations are taken in the overlap regions which we define while defining the 1-forms potentials (which are not global on the manifold). The curvature here is the 2-form $F$, which is the field for electromagnetism. It follows a Bianchi identity
$$dF=0.$$
Similarly, we can describe gauge theory using this way of seeing for $G=SU(2)$ or $G=SO(3)$. However, every case has its own special features; for example, if one has a compact abelian group (like U(1)), one can shoot for Hodge theory to study the 2-forms.

Now, the gauge group $G$ is the automorphism (the homomorphism from $E$ to $E$) of the bundle, and the algebra associated with $G$ is called gauge algebra. Thus, we observe that the Yang-Mills theory is described by these connections, curvature, and gauge group of a vector bundle.

We will expand later on why the connections are defined only locally on a manifold. For reference, one may check this book or this. There exists a very giant literature (expository too) on this.

Posted in | Leave a comment Print it.

The Quill 1 ~ Dirac Strings

In the Quill series, I will discuss works ranging from quantum gravity to mathematics (especially algebraic geometry). I do not have any specific number of posts to write, so they will come as I see them in this month of February. This has been inspired by This Week's Finds by John Baez. 


The Issue with Dirac Strings

There was a paper last year by Gonuguntla and Singleton (https://arxiv.org/abs/2310.06005) that argued that there was an overlooked field momentum in the case of Dirac string, which makes the model inconsistent with the center of energy theorem if one accepts that they are truly real. 
We start with a simple monopole placed at the origin of ${\mathbb R}^3$ so that the magnetic and electric charges are at rest. The field momentum of the electric field by this monopole has two components: Coulomb's term and Dirac's string term. There is a non-zero mechanical field momentum contribution from the interaction of magnetic charge and electric field due to the inclusion of Dirac's string, which does not vanish at all. See https://arxiv.org/abs/2310.06005 for the discussion on this term. It was suggested in same that there are two takeaways from this non-trivial mechanical field momentum: 1) the first is to say that the center of energy theorem is wrong, which implies that this term is an error, and 2) the second is to believe in the center of energy theorem and accept this term as a real contribution which implies that Dirac's string is real and must be physical even though how infinitesimally thin we believe it to be. However, then it becomes a system in which the electric charges generate a monopole-like magnetic field with a solenoidal magnetic flux.

A comment on that paper appeared (https://arxiv.org/abs/2401.02423v1), which points out that the vector potential taken in the paper of Gonuguntla and Singleton, is taken over all the space is not possible because these potentials, which are 1-forms can not be defined globally but only can be defined in certain overlaps using gauge transformations and the quantization is defined because of the locally constant cocycle condition appearing in those overlaps. For basics, see ( T. T. Wu and C. N. Yang, "Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields," Phys. Rev. D 12, 3845 (1975) doi:10.1103/PhysRevD.12.3845)

Posted in | 1 Comment Print it.