Random Matrices

I have been lately studying the random matrices and their application that widely defaults for the JT gravity. Though, random matrices need to be started with Wigner's idea of the random matrix in nuclear theory. Right now, random matrix theory can be considered an important subject, at least from my learning view. In the following (short), I present my rough ideas of random matrix theory, extracted from here.


Random matrix theory (RMT) is a classic example of statistical group theory in general physics. The most recent development for RMT is the equivalence of JT gravity with RMT, see here. From the correspondence of AdS/CFT, one learns that a bulk theory with gravity lives on the boundary of a quantum system. However, the equivalence of JT gravity is not given to a boundary theory (or a bulk theory). In fact, RMT shares the correspondence with JT gravity; hence JT gravity is dual to random matrix integral of Hamiltonian $ H $, where $ H $ is a random matrix.

(RMT is mainly concerned about groups' statistics, at least for us, whose applications are wide in physics, as indicated.)

Consider a matrix $ \sf M $, from linear algebra we know that $ \sf M$ holds eigenvalues $ {\sf {m}}_{ij} $ (for $ 2 \times 2 $ matrix). Suppose the elements of matrix $ \sf M $ are random variables, to which we say to obey some specific outlined properties. In that case, the study of those ($\mathsf{m}_{ij} $) eigenvalues are called the "random matrix theory'' problem. Now one can ask what the practical application of RMT is. Actually, there are many practical applications. Consider the well-studied example of the nucleus using these random matrices, which Wigner (and Dyson) developed. And the recent example of the success of RMT is JT gravity. I suggest the reader to read the most interesting book on this subject by  Madan Lal Mehta.


From a mathematical perspective, random matrices serve great as well. However, it tends that it is currently revolutionizing the physics. Nuclear physics had first exploitation of random matrices. And now, it is used as a tool in black hole information problems, JT gravity (see the Saad, Shenker, Stanford), and other statistics problems (include the pedastriation and all that researches).  The deformations of these matrices were done by Witten, and he also did the volume problems for the subject. 

Radom matrices can be classified into classes. See sec. 4 in this and Witten's paper on JT gravity. For a full study, consider the Mehta's book.

This entry was posted in ,. Bookmark the post. Print it.

1 Response to Random Matrices

  1. Anonymous says:

    it started from nuclear physics

Leave a Reply